Ein neues Oxoruthenat(IV): $Ba_4Ru_{1.1}Mn_{1.9}O_{10}$ mit statistischer Besetzung der M^{4+} -Metallpositionen

Marc Neubacher und Hanskarl Müller-Buschbaum

Institut für Anorganische Chemie, Christian-Albrechts-Universität, D-2300 Kiel, Bundesrepublik Deutschland

A New Oxoruthenate(IV): $Ba_4Ru_{1.1}Mn_{1.9}O_{10}$ with Statistically Occupied M^{4+} Positions

Summary. (I) $Ba_4Ru_{1,1}Mn_{1,9}O_{10}$ was prepared and investigated by single crystal X-ray technique. It crystallizes with orthorhombic symmetry, space group $C_{2v}^{12} - Cmc_{2_1}$, a = 5.74; b = 13.15; c = 12.86 Å; Z = 4. (I) shows M_3O_{12} -groups of face connected MO_6 -octahedra. The octahedra are occupied in different manner by Ru^{4+} and Mn^{4+} . It belongs to compounds with M_3O_{12} -octahedra-tripel connected in isolated two-dimensional wave-like planes.

Keywords. Barium; Ruthenium; Manganese; Oxygen; Crystal structure.

Einleitung

Die Kristallchemie der Erdalkalimetall-Oxoruthenate ist im Vergleich zu den Oxoplatinaten und -iridaten bisher nicht so intensiv untersucht worden. Zu den älteren Arbeiten gehören die Darstellung der Perowskite Ba_{0.83}Sr_{0.17}RuO₃ [1], BaRuO₃ [2] und BaCa_{0 33}Ru_{0 67}O₃ [3]. Auch die daran anschließenden Untersuchungen erfolgten stets an mikrokristallinem Material, genannt seien hier Ba_{3.7}Ru_{14.7}Cr_{7.3}O₄₄[4], $Ba_3MRu_2O_9$ (M = Sm [5], Mg [6], Ti [7], Sr [8], In [9]), Ba_2MRuO_6 (M = In[9], La [10]), $Ba_4ZrRu_3O_{12}$ [11] und $BaFe_2Ru_4O_{11}$ [12]. Die neueren Publikationen berichten über die Darstellung von Einkristallen und deren Strukturaufklärung mit Röntgenbeugung. Dies betrifft die Verbindungen Ba₅(Ir, Ru)₃O₁₂ [13] und Ba₅Ru₂O₉Cl₂[14]. Typisch für alle Oxoruthenate ist die oktaedrische Koordination von Ru⁴⁺ bzw. Ru⁵⁺ und als besonderes Merkmal die Flächenverknüpfung von RuO₆-Oktaedern zu größeren Baugruppen. Unter all den aufgeführten Stoffen zeigen nur drei eine Mitbesetzung der Rutheniumpositionen durch andere Ionen, dies sind BaFe₂Ru₄O₁₁ [12], Ba₃TiRu₂O₉ [7] und Ba₅(Ir, Ru)₃O₁₂ [13]. Bei den Oxoplatinaten und Oxoiridaten war es gelungen, Pt⁴⁺ bzw. Ir⁴⁺ partiell gegen Ti^{4+} auszutauschen. Die M_3O_{12} -Oktaedertripel in den Kristallstrukturen von Ba₄(Pt, Ti)₂PtO₁₀ [15] und Ba₄Ir_{1.45}Ti_{1.55}O₁₀ [16] enthalten somit trotz Flächenverknüpfung der MO₆-Oktaeder und den daraus resultierenden sehr kurzen Metall-Metallabständen, statistisch eingestreute Ti⁴⁺-Ionen, die in Oxotitanaten keine flächenverknüpften Oktaeder ausbilden.

Der folgende Beitrag zeigt, daß in Oxoruthenaten Ru^{4+} auch gegen Mn^{4+} ersetzt werden kann.

Ergebnisse und Diskussion

Darstellung und Strukturaufklärung von Ba₄Ru_{1.1}Mn_{1.9}O₁₀

Zur Synthese von erdalkalimetallreichen Oxoruthenaten erwies sich der Einsatz von metallischem Ruthenium als besonders geeignet. Das bei der Oxidation durch Luftsauerstoff gebildete RuO_2 wird durch die BaO-Überschußkomponente unter

Tabelle 1. Parameter für $Ba_4Ru_{1,1}Mn_{1,9}O_{10}$ mit Standardabweichungen in Klammern. In der Raumgruppe Cmc2₁ sind folgende Punktlagen besetzt

	Lage	x	у	Z	<i>B</i> [Å ²]		
Ba 1	(4 a)	0.0	0.0074 (6)	0.892 (1)	0.5 (1)		
Ba 2	(4 a)	0.0	0.7147 (5)	0.857 (1)	0.11 (7)		
Ba 3	(4 a)	0.0	0.2150 (8)	0.638 (1)	1.6 (2)		
Ba 4	(4 a)	0.0	0.5075 (8)	0.613 (1)	1.4 (2)		
0.6 Ru/3.9 Mn 1	(4 a)	0.0	0.255 (1)	0.0	0.38 (9)		
1.3 Ru/2.7 Mn 2	(4 a)	0.0	0.8818 (9)	0.651 (2)	0.7 (2)		
2.4 Ru/1.6 Mn 3	(4 a)	0.0	0.3707 (8)	0.851 (2)	0.64 (2)		
01	(4 a)	0.0	0.208 (4)	0.860 (4)	2.3 (4)		
O 2	(8 b)	0.230 (5)	0.156 (3)	0.034 (3)	1.8 (4)		
O 3	(8b)	0.261 (5)	0.373 (2)	0.757 (4)	0.01 (31)		
O 4	(8b)	0.220 (4)	0.360 (2)	0.965 (3)	0.9 (4)		
O 5	(4 a)	0.0	0.027 (3)	0.641 (4)	0.6 (4)		
06	(4 a)	0.5	0.009 (3)	0.864 (4)	0.6 (4)		
Ο7	(4 a)	0.5	0.227 (2)	0.649 (3)	0.01 (34)		
Anhang: Kristallog Gitterkonstanten [4 Volumen [Å ³]: Auslöschungen:	raphiscl	the Daten und Meßbed a = 5.735 (3) b = 13.148 (4) c = 12.855 (8) 969.38 hkl: h + k = 2n 0kl: k = 2n h0l: l = 2n, h = 2n $hk0: h = 2n, k = 2n^{8}$ h00: h = 2n 0k0: k = 2n 00l: l = 2n	ingungen				
Raumgruppe:		$C_{2v}^{12} - Cmc_{1}^{2}$					
Zahl der Formeleinheiten: $Z = 4$							
Diffraktometer: Philips PW 1100, modifiziert von Stoe							
Strahlung/Monochromator: MoK _a , Feinfokus/Graphit							
2 θ -Bereich: $5^\circ < 2\theta < 70^\circ$							
Schrittweise [°2 0]:		0.04					
Meßmodus:		$\Omega/2 \theta$					
Anzahl der Reflexe:		548 $(F_0 > 3 \sigma F_0)$					
Gütefaktor:		R = 0.061					
		$R_w = 0.043 \ [w = 1.07]$	$(47/\sigma^2(F_0)]$				
		$(F_0 > 3 \sigma F_0)$					

^a Abweichung zur Raumgruppe siehe Diskussion

And a second sec			
Ba 1 – O 1	2.72 (5)	Ba 2 – O 7	2.71 (4)
Ba 1 – O 4	2.72 (3) (2×)	Ba 2 – O 6	2.75 (4)
Ba 1 – O 3	2.86 (4) (2×)	Ba 2 – O 3	2.84 (3) (2×)
Ba 1 – O 6	2.915 (6) (2×)	Ba 2 – O 4	2.89 (3) (2×)
Ba 1 – O 7	3.02 (4) (2×)	Ba 2 – O 1	2.893 (2) (2×)
Ba 1 – O 5	3.27 (5)	Ba 2 – O 2	2.90 (4) (2×)
Ba 1 – O 5	3.28 (5)		
Ba 3 – O 5	2.52 (4)	Ba 4 – O 2	2.88 (4) (2×)
Ba 3 – O 2	2.69 (4) (2×)	Ba 4 – O 4	2.92 (3) (2×)
Ba 3 – O 1	2.89 (6)	Ba 4 – O 5	2.926 (7) (2×)
Ba 3 – O 7	2.899 (3) (2×)	Ba 4 – O 7	2.96 (3)
Ba 3 – O 4	2.95 (3) (2×)	Ba 4 – O 3	3.01 (4) (2×)
Ba 3 – O 3	3.02 (4) (2×)	Ba4-O6	3.26 (5)
		Ba 4 – O 6	3.26 (3)
Ru/Mn 1 – O 1	1.93 (6)	Ru/Mn 2 - O 5	1.94 (4)
Ru/Mn 1 - O 2	1.93 (3) (2×)	Ru/Mn 2 - O 3	1.96 (4) (2×)
Ru/Mn 1 - O 4	1.95 (3) (2×)	Ru/Mn 2 - O 7	2.07 (4)
Ru/Mn 1 – O 7	1.96 (4)	Ru/Mn 2 - O 2	2.08 (4) (2×)
Ru/Mn 3 – O 6	1.85 (4)		
Ru/Mn3 - O3	1.94 (4) (2×)		
Ru/Mn 3 - O 4	1.96 (3) (2×)		
Ru/Mn 3 – O 1	2.17 (5)		
Ru/Mn 1 - Ru/Mn 2	2.68 (2)		
Ru/Mn 1 - Ru/Mn 3	2.48 (2)		

Tabelle 2. Interatomare Abstände [Å] mit Standardabweichungen in Klammern für Ba₄Ru_{1.1}Mn_{1.9}O₁₀

Verbindungsbildung abgefangen. Einkristalle entstehen beim Erhitzen von $Ru: BaCO_3: MnCO_3 = 1:3:3.5$ auf 1000 °C an Luft in Gegenwart einer $BaCl_2$ -Schmelze. Innerhalb von 24 Tagen wachsen etwa 0.1 mm große schwarze Einkristalle, deren Qualität von den Reaktionsbedingungen und dem wiederholt zu ergänzenden Schmelzmittel ($BaCl_2$) abhängen. Mit energiedispersiver Röntgenspektrometrie (Elektronenmikroskop Leitz Sr50, EDX-System Link AN 10000) wurden die Kristallite analytisch untersucht. Die ermittelte Zusammensetzung entspricht dem Ergebnis der Röntgenstrukturanalyse.

Mit Weissenbergaufnahmen und Vierkreisdiffraktometermessungen wurden die kristallographischen Daten bestimmt. Diese sind mit den Meßbedingungen im Anhang von Tabelle 1 zusammengestellt. Die mit dem Programm SHELX-76 [17] verfeinerten Parameter sind in Tabelle 1 aufgeführt. Eine Gegenüberstellung berechneter (F_c) und beobachteter (F_0) Strukturfaktoren ist aus Platzgründen an anderer Stelle [18] niedergeschrieben. Mit den Parametern von Tabelle 1 berechnen sich die in Tabelle 2 aufgeführten wichtigsten interatomaren Abstände. Hier sei angemerkt, daß die Auslöschungsbedingung (hk0) mit h, k = 2n zu den höhersymmetrischen Raumgruppen $C_{2v}^{17} - C2cb$ bzw. $D_{2h}^{18} - Cmca$ führt. In der folgenden Diskussion wird auf die Notwendigkeit zur Wahl der Raumgruppe $C_{2v}^{12} - Cmc2_1$ ausführlich eingegangen.

Beschreibung der Kristallstruktur

Die Röntgenstrukturanalyse an Einkristallen von Ba₄Ru_{1.1}Mn_{1.9}O₁₀ zeigt, daß der Aufbau dieser Substanz im Prinzip den Kristallstrukturen von (A) Ba₄(Pt, Ti)₂PtO₁₀ [15] und (B) Ba₄Ir_{1.45}Ti_{1.55}O₁₀ [16] entspricht. Die Ähnlichkeit bezieht sich auf die Koordinationspolyeder und deren Verknüpfung. Abb. 1 hebt die oktaedrische Umgebung von Ru^{4+}/Mn^{4+} schraffiert hervor. Es ist zu erkennen, daß je drei Oktaeder über Flächen zu M_3O_{12} -Oktaedertripeln verknüpft sind. Längs [001] entsteht über Eckenverknüpfung dieser Dreifachpolyeder eine Zick-zack-Kette. In Richtung der a-Achse erfolgt eine Vernetzung zu zweidimensional gewellten Flächen. Der kristallchemische Verbund längs [010] erfolgt durch die Ba²⁺-Ionen, die von 10 bzw. 11 O²⁻-Ionen koordiniert sind. Ohne Berücksichtigung der Oktaederbesetzung hat somit Ba₄Ru_{1.1}Mn_{1.9}O₁₀ mit den Stoffen (A) und (B) einen identischen Aufbau. Die nicht sofort erkennbaren Unterschiede zwischen diesen drei Verbindungen liegen in der Verteilung von Ru^{4+} und Mn^{4+} gegenüber Pt^{4+} bzw. Ir^{4+} und Ti^{4+} . Die Stoffe (A) und (B) unterscheiden sich zum einen durch die alleinige Besetzung des mittleren Oktaeders der M_3O_{12} -Baugruppe mit Pt⁴⁺ bzw. Ir⁴⁺ von der hier untersuchten Substanz $Ba_4Ru_{1,1}Mn_{1,9}O_{10}$. In dieser ist das mittlere Oktaeder statistisch mit 0.6 Ru^{4+} und 3.4 Mn^{4+} besetzt. Weitere Feinheiten bestehen darin, daß in Substanz (A) die äußeren Oktaeder der Pt₃O₁₂-Baugruppen äquivalent mit Pt⁴⁺ und Ti⁴⁺ aufgefüllt sind. Dies steht im Einklang mit der höheren Raumgruppe D_{2h}¹⁸-Cmca, die beide Außenoktaeder auf einer Punktlage zusammenfaßt. Für $Ba_4Ir_{1.45}Ti_{1.55}O_{10}$ wurden Reflexe beobachtet, die die Auslöschung (*hk*0) von *h*, $k = 2n \operatorname{auf} h + k = 2n$ reduzieren. Dies ist eindeutig eine Folge der unterschiedlich

Abb. 1. Perspektivische Wiedergabe der Oktaederverknüpfung in $Ba_4Ru_{1,1}Mn_{1,9}O_{10}$. Die M_3O_{12} -Baugruppen sind schraftiert hervorgehoben. Kleine Kugel = O^{2-} , Kugel mit Segment = Ba^{2+}

Abb. 2. Offene Darstellung einer M_3O_{12} -Baugruppe. Besetzung der Oktaeder siehe Tabelle 1 (Abstände in Å)

besetzten äußeren Oktaeder der (Ir, Ti)₃O₁₂-Polyedertripel, d. h. eine achtzählige Punktlage wird hier in zwei vierzählige aufgespalten (Raumgruppe Cmc2₁). Man muß nach der durchgeführten Röntgenstrukturanalyse davon ausgehen, daß $Ba_4Ru_{1,1}Mn_{1,9}O_{10}$ mit $Ba_4Ir_{1,45}Ti_{1,55}O_{10}$ und nicht mit $Ba_4(Pt, Ti)_2PtO_{10}$ isotyp ist, obwohl die schwachen Reflexe (hk0) mit h + k = 2n an der hier untersuchten Verbindung nicht zu erkennen sind. Dies ist zu verstehen, wenn man die Elektronendichtedifferenzen zwischen gleichförmig besetzten äußeren Polyedern $[Ba_4(Pt, Ti)_2PtO_{10}]$ zu den experimentell gefundenen unterschiedlichen Besetzungen der äußeren Oktaeder (Ba₄Ru_{1.1}Mn_{1.9}O₁₀ und Ba₄Ir_{1.45}Ti_{1.55}O₁₀) betrachtet. Bei gleichförmiger Besetzung der äußeren Oktaeder (Raumgruppe Cmca) mit Ir⁴⁺ und Ti⁴⁺ bzw. Ru⁴⁺ und Mn⁴⁺ gegenüber den experimentell gefundenen Metallverteilungen (Raumgruppe Cmc2₁) unterscheiden sich die Elektronendichten für die Ir⁴⁺/Ti⁴⁺-Lagen um rund 30 Elektronen, für die Ru⁴⁺/Mn⁴⁺-Lagen jedoch nur um 10. Dies ist der Grund weshalb die für die Raumgruppe Cmc21 notwendige Auslöschung (*hk*0) mit h + k = 2n für Ba₄Ru_{1.1}Mn_{1.9}O₁₀ nicht beobachtbar ist. Der Gütefaktor für die hier untersuchte Verbindung steigt von R = 0.06 auf R = 0.12, wenn in der Raumgruppe Cmca die Besetzung der äußeren Oktaeder in eine gleichförmige nivelliert wird.

Interessant ist nicht nur die Metallverteilung sondern auch die exakte Lage der Ru^{4+} - und Mn^{4+} -Ionen in den in Abb. 1 gezeigten Oktaedertripeln. Abb. 2 gibt in transparenter Form eine M_3O_{12} -Baugruppe wieder. Das mittlere, überwiegend mit Mn^{4+} besetzte Oktaeder ist von den Metallionen zentriert. Die flächenverknüpft angrenzenden Oktaeder ergeben ungewöhnliche kurze Mittelpunktabstände zum mittleren Oktaeder. Wie man erkennen kann, weichen die $\operatorname{Ru}^{4+}/\operatorname{Mn}^{4+}$ -Ionen der äußeren Polyeder von der Mittelpunktlage ab, wodurch sich die Metall-Metallabstände etwas verlängern. Dennoch sind diese mit 2.48 und 2.68 Å sehr kurz. Der relativ längere Metall-Metall-Abstand entspricht der manganreicheren Position. Obwohl der Radius von Mn^{4+} etwas kleiner als der von Ru^{4+} ist, wird der längere Abstand eingestellt. Hier drückt sich deutlich der Unterschied zur Bildung von Metall-Metall-Bindungen zwischen Ruthenium und Mangan aus.

Abschließend kann festgestellt werden, daß Ba₄Ru_{1.1}Mn_{1.9}O₁₀ das dritte Beispiel für zweidimensional unendliche Vernetzung von M_3O_{12} -Baugruppen ist. Vernetzungen in die dritte Dimension zeigen beispielsweise die Verbindungen Ba₇Ir₆O₁₉ [19] und Ba₉Ir_{3.2}Mn_{5.5}O₂₇ [20]. An Ba₅(Ir, Ru)₃O₁₂ [13] wurden isolierte M_3O_{12} -Baugruppen beobachtet.

Dank

Der deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung mit wertvollen Sachmitteln.

Alle Rechnungen wurden auf der elektronischen Rechenanlage PDP 10 der Universität Kiel durchgeführt und die Zeichnungen mit einem modifizierten ORTEP-Programm [21, 22] erstellt.

Literatur

- [1] Donohue P., Katz L., Ward R. (1966) Inorg. Chem. 5: 335
- [2] Donohue P., Katz L., Ward R. (1965) Inorg. Chem. 4: 306
- [3] Darriet J., Drillon M., Villeneuve G., Hagenmueller P. (1976) J. Solid State Chem. 19: 213
- [4] Cadee M. C., Prodan A. (1979) Mat. Res. Bull. 14: 613
- [5] Thumm I., Treiber U., Kemmler-Sack S. (1981) Z. Anorg. Allg. Chem. 477: 161
- [6] Treiber U., Kemmler-Sack S., Ehmann A. (1982) Z. Anorg. Allg. Chem. 487: 189
- [7] Verdoes D., Zandbergen H. W., Ijdo D. J. W. (1985) Acta Cryst. 41: 170
- [8] Zandbergen H. W., Ijdo D. J. W. (1984) Acta Cryst. 40: 919
- [9] Schaller H. U., Kemmler-Sack S. (1981) Z. Anorg. Allg. Chem. 473: 178
- [10] Battle P. D., Goodenough J. B., Price R. (1983) J. Solid State Chem. 46: 234
- [11] de Vreugd C. H., Zandbergen H. W., Ijdo D. J. W. (1984) Acta Cryst. 40: 1987
- [12] Verdoes D., Zandbergen H. W., Ijdo D. J. W. (1987) Mat. Res. Bull. 22: 1
- [13] Lang C., Müller-Buschbaum H. (1990) Z. Anorg. Allg. Chem. 580: 71
- [14] Lang C., Müller-Buschbaum H. (im Druck) Z. Anorg. Allg. Chem.
- [15] Fischer R., Tillmanns E. (1981) Z. Kristallogr. 157: 69
- [16] Müller-Buschbaum H., Neubacher M. (im Druck) Z. Anorg. Allg. Chem.
- [17] Sheldrick G. (1976) Program for Crystal Structure Determination, Version 1. 1. 1976. Cambridge
- [18] Neubacher M. (1990) Diplomarbeit. Kiel
- [19] Lang C., Müller-Buschbaum H. (1989) Monatsh. Chem. 120: 705
- [20] Lang C., Müller-Buschbaum H. (1990) J. Less-Common Metals 157: 301
- [21] Johnson C. K. (1965) Report ORNL-3794. Oak Ridge Nat. Lab., Oak Ridge, Tennessee
- [22] Plötz K.-B. (1982) Dissertation. Kiel

Eingegangen 8. März 1990. Angenommen 14. März 1990